Search results for "Ignition timing"

showing 4 items of 4 documents

Design and Implementation of an Electronic Control Unit for a CFR Bi-Fuel Spark Ignition Engine

2017

In this work an Electronic Control Unit for the management of a CFR engine will be described. The engine, which is used both for fuel octane rating (both in terms of RON and MON) and for research purpose, is equipped with a double injection system, with the aim to independently operate both with liquid and gaseous fuels. The developed ECU, hence, is able to control the injections of both kind of fuel, together with the spark ignition. Furthermore the system is also able to measure fuel’s consumption, instantaneous engine speed of rotation and air-fuel ratio, showing all the running parameters both on a local LCD display and on a PC based graphical user interface.

Electronic control unitEngineeringLiquid-crystal displaybusiness.industryComputerApplications_COMPUTERSINOTHERSYSTEMSSettore ING-INF/01 - ElettronicaAutomotive engineeringlaw.inventionIgnition systemSettore ING-IND/08 - Macchine A FluidolawSpark-ignition engineSpark (mathematics)Octane ratingIgnition timingbusinessEmbedded programming Engine control unit Spark ignition STM-Nucleo boardGraphical user interface
researchProduct

Spark ignition feedback control by means of combustion phase indicators on steady and transient operation

2014

In order to reduce fuel cost and CO2 emissions, modern spark ignition (SI) engines need to lower as much as possible fuel consumption. A crucial factor for efficiency improvement is represented by the combustion phase, which in an SI engine is controlled acting on the spark advance. This fundamental engine parameter is currently controlled in an open-loop by means of maps stored in the electronic control unit (ECU) memory: such kind of control, however, does not allow running the engine always at its best performance, since optimal combustion phase depends on many variables, like ambient conditions, fuel quality, engine aging, and wear, etc. A better choice would be represented by a closed-…

Electronic control unitEngineeringbusiness.industryMechanical Engineeringspark advance feedback control combustion phase indicators cylinder pressure spark ignition engineCombustionComputer Science Applicationslaw.inventionIgnition systemSettore ING-IND/08 - Macchine A FluidoControl and Systems EngineeringlawControl theorySpark-ignition engineSpark (mathematics)Fuel efficiencyTransient responseIgnition timingbusinessInstrumentationInformation Systems
researchProduct

Supercharging the Double-Fueled Spark Ignition Engine: Performance and Efficiency

2017

Internal combustion engine development focuses mainly on two aspects: fuel economy improvement and pollutant emissions reduction. As a consequence, light duty spark ignition (SI) engines have become smaller, supercharged, and equipped with direct injection and advanced valve train control systems. The use of alternative fuels, such as natural gas (NG) and liquefied petroleum gas (LPG), thanks to their lower cost and environmental impact, widely spread in the automotive market, above all in bifuel vehicles, whose spark ignited engines may run either with gasoline or with gaseous fuel. The authors in previous works experimentally tested the strong engine efficiency increment and pollutant emi…

Engineeringbusiness.industry020209 energyMechanical EngineeringFuels Engines Pressure Emissions Gasoline Combustion Spark-ignition engine PollutionEnergy Engineering and Power TechnologyAerospace Engineering02 engineering and technologyCombustionAutomotive engineeringlaw.inventionIgnition systemFuel TechnologySettore ING-IND/08 - Macchine A FluidoNuclear Energy and EngineeringlawSpark-ignition engine0202 electrical engineering electronic engineering information engineeringFuel efficiencyIgnition timingGasolinebusiness
researchProduct

An analytical approach for the evaluation of the optimal combustion phase in spark ignition engines

2009

It is well known that the spark advance is one of the most important parameters influencing the efficiency of a spark ignition engine. A change in this parameter causes a shift in the combustion phase, whose optimal position, with respect to the piston motion, implies the maximum brake mean effective pressure for given operative conditions. The best spark timing is usually estimated by means of experimental trials on the engine test bed or by means of thermodynamic simulations of the engine cycle. In this work, instead, the authors developed, under some simplifying hypothesis, an original theoretical formulation for the estimation of the optimal combustion phase. The most significant parame…

Engineeringbusiness.industryMechanical EngineeringHomogeneous charge compression ignitionEnergy Engineering and Power TechnologyAerospace EngineeringMechanical engineeringMechanicsspark ignition engine optimal combustion phase spark timing spark advanceCombustionlaw.inventionIgnition systemPistonFuel TechnologySettore ING-IND/08 - Macchine A FluidoNuclear Energy and EngineeringMean effective pressurelawSpark-ignition engineIgnition timingCombustion chamberbusiness
researchProduct